Pauli exclusion principle - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Pauli exclusion principle - перевод на Английский

QUANTUM MECHANICAL PRINCIPLE THAT TWO IDENTICAL FERMIONS CANNOT OCCUPY THE SAME QUANTUM STATE SIMULTANEOUSLY
Pauli principle; Pauli Exclusion Principle; Pauli anti symmetry principle; Pauli's anti symmetry principle; Pauli's exclusion principle; Pauli exlusion principle; Lightwave penetration of materials; Pauli exclusion; Pauli exclusive principle; The Pauli Exclusion Principle; Pauli's Exclusion Principle

Pauli exclusion principle         
Het uitsluitingsprincipe van Pauli (een regel die werd vastgesteld door de Oostenrijkse natuurkundige Pauli volgens welke er zich nooit twee elektronen in gelijke toestand bevinden in een atoom)
lesser evil         
GUIDING PRINCIPLE FOR A MORAL DILEMMA
Lesser evil; Lesser of two evils; Lesser of Two Evils; Lesser of two evils principle (politics); Least worst; Lesser evils; Least-worst; Lesser-of-two-evils principle; Lesser evil principle; Lesser-evil principle; Lesser-evilism; The evil of two lessers
het minste kwaad
guiding principle         
  • Imperial Roman]] copy of a lost [[bronze sculpture]] made by [[Lysippos]]
  • upright=0.9
GUIDING RULE OR INEVITABLE CONSEQUENCE OF SOMETHING, SUCH AS THE LAWS OBSERVED IN NATURE
Philosophical principles; Philosophical principle; Principle (philosophy); Statement of principles; Guiding principle; Principles
leidend beginsel

Определение

Pauli exclusion principle
['pa?li]
¦ noun Physics the assertion that no two fermions can have the same quantum number.
Origin
1920s: named after the American physicist Wolfgang Pauli.

Википедия

Pauli exclusion principle

In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.

In the case of electrons in atoms, it can be stated as follows: it is impossible for two electrons of a poly-electron atom to have the same values of the four quantum numbers: n, the principal quantum number; , the azimuthal quantum number; m, the magnetic quantum number; and ms, the spin quantum number. For example, if two electrons reside in the same orbital, then their n, , and m values are the same; therefore their ms must be different, and thus the electrons must have opposite half-integer spin projections of 1/2 and −1/2.

Particles with an integer spin, or bosons, are not subject to the Pauli exclusion principle: any number of identical bosons can occupy the same quantum state, as with, for instance, photons produced by a laser or atoms in a Bose–Einstein condensate.

A more rigorous statement is that, concerning the exchange of two identical particles, the total (many-particle) wave function is antisymmetric for fermions, and symmetric for bosons. This means that if the space and spin coordinates of two identical particles are interchanged, then the total wave function changes its sign for fermions and does not change for bosons.

If two fermions were in the same state (for example the same orbital with the same spin in the same atom), interchanging them would change nothing and the total wave function would be unchanged. The only way the total wave function can both change sign as required for fermions and also remain unchanged is that this function must be zero everywhere, which means that the state cannot exist. This reasoning does not apply to bosons because the sign does not change.